大家好,今天小编关注到一个比较有意思的话题,就是关于空气电池科研成果的问题,于是小编就整理了2个相关介绍空气电池科研成果的解答,让我们一起看看吧。
空气电池能充电吗?
能。
据物理学家组织网报道,最近,美国乔治·华盛顿大学科学家展示了一种新型高能电池,称为“熔融—空气电池”,是目前储电能力最高的电池之一。这种电池与其他高能电池不同,还能再次充电。虽然该电池目前要在高温下操作,但研究人员正在进一步实验改进其性能,以期这种电池在电动汽车、储电电网领域更具竞争力。相关论文发表在最近出版的《能源与环境科学》杂志上。
“这是第一款可充电的熔融—空气电池,利用空气中的自由氧和多电子存储分子存储电能。”该校研究人员斯图亚特·利希特说,“目前在电动汽车和电网中已有实用充电熔融硫电池,但不是空气。硫的质量是氧的两倍,而且空气不会新增电池重量。”
多电子存储分子是在一个分子中存储多个电子,这是熔融空气电池的最大优势之一。这使它比单电子存储分子的电池,如锂离子电池储电能力更高。目前储电能力最高的电池——硼化矾(VB2)—空气电池,每个分子能存储11个电子,但VB2—空气电池及其他高能电池却不可充电。
利希特解释说,熔融电解质是让电池可充电的关键。熔融电解质是高活性的,能通过一种特殊电解分裂反应来为电池“充电”。如铁熔融—空气电池放电后,铁氧混合物会生成氧化铁。充电则是把氧化铁变成金属铁,把氧气释放到空气里。
熔融—空气电池结合了高储电能力和可充电性能。用空气中的氧作阴极材料,不用任何外来催化剂或薄膜。不同电池要不同的电解质,但都是熔融的,研究人员所展示的样本是在700℃到800℃时熔融为液态。“对电池来说高温并不常见,但这并非障碍。较低容量的高温熔融电解硫电池已经用在了电动汽车上,至今尚未发现缺点。”利希特说。
他们还把铁、碳和VB2作电解质进行比较,储电量分别达到1万、1.9万和2.7万瓦时/升。储电量受每种分子所存储的电子数量的影响:铁是3个电子,碳是4个,VB2是11个。而锂—空气电池只有6200瓦时/升,因为它每个分子只能存储一个电子。
高储电能力和可充电性的结合,让熔融—空气电池在未来能源存储应用中极具吸引力。目前,研究人员正在改进该电池的其他性能,如研究熔点更低的熔融电解质、提高电压和能效等。利希特说:“熔融—空气电极上的放电电流足以生成高电压,***如新增循环空气和熔融盐之间的表面积,还能进一步提高电压。”
电池技术未来发展趋势?
以下的四大技术,就是未来电池重要的发展方向。
世界上最快的特斯拉超级电站,仅需40分钟就能充电80%,但这和纳米锂电池一比就不算什么了。新加坡南洋理工大学发明了一种基于纳米管的新型电池,能在2分钟内充电70%,其使用寿命长达20年。但由于工艺复杂,成本较高,这项技术要普及恐怕还需要好几年。
锂空气电池:蓄电量倍数提升
锂空气电池的最大优点是能量密度高,目前的锂离子电池能量密度只有200 Wh/kg左右,而现有的锂空气电池已经达到500 Wh/kg,理论上的极限是12k Wh/kg,还有极大的提升空间。IBM公司很看好这项技术,发起了“电池500”的项目,也就是将续航里程提升到500英里(即800公里)。
固态电池:更轻便,更安全
传统锂电池***用液态电解质,而固态电池原理相同,只是将电解质换成固态——通常是金属混合物。这样设计的好处是让更多带电离子聚集在一起,传导更多的电流,同时有效减少电池体积和重量,安全性更出色。因为液态电解质在高温下会发生副反应,容易产生爆炸,而固态电池就不会有这问题。
半固态锂液流电池:生产成本更低
在此领域最领先的莫过于蒋业明教授开创的24M公司,半固态锂液流电池可以说是对液流电池的改进,它的电极由锂化合物粒子和电解液混合而成,电极厚度比传统锂电池增加5倍,既提升了能量密度,又减少80%的“非活性”材料,从而降低了材料成本。
除了以上这4项技术,还有泡沫电池、锂硫电池、石墨烯等也引起了广泛关注,大部分都处于研发阶段,还很难说哪种电池会成为下一代的主流产品。百花齐放虽是好事,但也造成了研究资金的分散。
到此,以上就是小编对于空气电池科研成果的问题就介绍到这了,希望介绍关于空气电池科研成果的2点解答对大家有用。